8 research outputs found

    Processing multiple non-adjacent dependencies: evidence from sequence learning

    Get PDF
    Processing non-adjacent dependencies is considered to be one of the hallmarks of human language. Assuming that sequence-learning tasks provide a useful way to tap natural-language-processing mechanisms, we cross-modally combined serial reaction time and artificial-grammar learning paradigms to investigate the processing of multiple nested (A(1)A(2)A(3)B(3)B(2)B(1)) and crossed dependencies (A(1)A(2)A(3)B(1)B(2)B(3)), containing either three or two dependencies. Both reaction times and prediction errors highlighted problems with processing the middle dependency in nested structures (A(1)A(2)A(3)B(3-)B(1)), reminiscent of the 'missing-verb effect' observed in English and French, but not with crossed structures (A(1)A(2)A(3)B(1-)B(3)). Prior linguistic experience did not play a major role: native speakers of German and Dutch-which permit nested and crossed dependencies, respectively-showed a similar pattern of results for sequences with three dependencies. As for sequences with two dependencies, reaction times and prediction errors were similar for both nested and crossed dependencies. The results suggest that constraints on the processing of multiple non-adjacent dependencies are determined by the specific ordering of the non-adjacent dependencies (i.e. nested or crossed), as well as the number of non-adjacent dependencies to be resolved (i. e. two or three). Furthermore, these constraints may not be specific to language but instead derive from limitations on structured sequence learning.Netherlands Organisation of Scientific Research (NWO) [446-08-014]; Max Planck Institute for Psycholinguistics; Donders Institute for Brain, Cognition and Behaviour; Fundacao para a Ciencia e Tecnologia (IBB/CBME, LA, FEDER/POCI) [PTDC/PSI-PCO/110734/2009]; Stockholm Brain Institute; Vetenskapsradet; Swedish Dyslexia Foundation; Hedlunds Stiftelse; Stockholm County Council (ALF, FoUU)info:eu-repo/semantics/publishedVersio

    Does the component processes task assess text-based inferences important for reading comprehension? A path analysis in primary school children

    Get PDF
    Using a component processes task (CPT) that differentiates between higher-level cognitive processes of reading comprehension provides important advantages over commonly used general reading comprehension assessments. The present study contributes to further development of the CPT by evaluating the relative contributions of its components (text memory, text inferencing, and knowledge integration) and working memory to general reading comprehension within a single study using path analyses. Participants were 173 third- and fourth-grade children. As hypothesized, knowledge integration was the only component of the CPT that directly contributed to reading comprehension, indicating that the text-inferencing component did not assess inferential processes related to reading comprehension. Working memory was a significant predictor of reading comprehension over and above the component processes. Future research should focus on finding ways to ensure that the text-inferencing component taps into processes important for reading comprehension

    Learning recursion: multiple nested and crossed dependencies

    Get PDF
    Language acquisition in both natural and artificial language learning settings crucially depends on extracting information from ordered sequences. A shared sequence learning mechanism is thus assumed to underlie both natural and artificial language learning. A growing body of empirical evidence is consistent with this hypothesis. By means of artificial language learning experiments, we may therefore gain more insight in this shared mechanism. In this paper, we review empirical evidence from artificial language learning and computational modeling studies, as well as natural language data, and suggest that there are two key factors that help determine processing complexity in sequence learning, and thus in natural language processing. We propose that the specific ordering of non-adjacent dependencies (i.e. nested or crossed), as well as the number of non-adjacent dependencies to be resolved simultaneously (i.e. two or three) are important factors in gaining more insight into the boundaries of human sequence learning; and thus, also in natural language processing. The implications for theories of linguistic competence are discussed. Keywords: artificial language learning; non-adjacent dependencies; processing complexity; recursion 1

    Increasing dopamine levels in the brain improves feedbackbased procedural learning in healthy participants: an artificial-grammar-learning experiment. Neuropsychologia

    No full text
    a b s t r a c t Recently, an increasing number of studies have suggested a role for the basal ganglia and related dopamine inputs in procedural learning, specifically when learning occurs through trial-by-trial feedbac

    Does the component processes task assess text-based inferences important for reading comprehension? A path analysis in primary school children

    Get PDF
    Using a component processes task (CPT) that differentiates between higher-level cognitive processes of reading comprehension provides important advantages over commonly used general reading comprehension assessments. The present study contributes to further development of the CPT by evaluating the relative contributions of its components (text memory, text inferencing, and knowledge integration) and working memory to general reading comprehension within a single study using path analyses. Participants were 173 third- and fourth-grade children. As hypothesized, knowledge integration was the only component of the CPT that directly contributed to reading comprehension, indicating that the text-inferencing component did not assess inferential processes related to reading comprehension. Working memory was a significant predictor of reading comprehension over and above the component processes. Future research should focus on finding ways to ensure that the text-inferencing component taps into processes important for reading comprehension

    Gender differences in mental simulation during sentence and word processing

    No full text
    Text comprehension requires readers to mentally simulate the described situation by reactivating previously acquired sensory and motor information from (episodic) memory. Drawing upon research demonstrating gender differences, favouring girls, in tasks involving episodic memory retrieval, the present study explores whether gender differences exist in mental simulation in children (Grades 4 to 6). In Experiment 1, 99 children performed a sentence-picture verification task measuring mental simulation at sentence level. In Experiment 2, 97 children completed a lexical decision task in which imageability of words was manipulated to measure mental simulation at word level. Only for girls we found faster reaction times for matching versus mismatching sentence-picture pairs (Experiment 1) and high-imageability versus low-imageability words (Experiment 2). The results suggest that girls construct more coherent and vivid mental simulations than boys and rely more heavily on these representations. The results emphasize the importance of including gender into reading comprehension research
    corecore